Maths with Lemon

Complex numbers

"The shortest path between two truths in the real domain passes through the complex domain."

Jacques Hadamard

Complex Numbers

What you have to know :

Key Points

  • 1. Watch the video:

The complex plane

What you have to know :

Key Points

  • 1. Watch the video:

Euler's form / De Moivre Theorem

What you have to know :

Key Points

  • 1. Watch the video:

Extra

Material and references:

  • Hodder Book HL(ISBN: 9781510462366) :
    4A, 4B, 4C, 4D, 4E

Key Points

  • 1. For \( z = x + iy \):
    modulus \( r = \sqrt{x^2 + y^2} \),
    argument \( \tan \theta = \frac{y}{x} \).

  • 2. Polar form: \( z = r(\cos\theta + i\sin\theta) \).

  • 3. Modulus–argument rules:
    \( |zw| = |z||w| \),
    \( \arg(zw) = \arg z + \arg w \);
    \( \left|\frac{z}{w}\right| = \frac{|z|}{|w|} \),
    \( \arg\!\left(\frac{z}{w}\right) = \arg z - \arg w \).

  • 4. Euler form:
    \( z = re^{i\theta} \),
    \( e^{i\theta} = \cos\theta + i\sin\theta \),
    \( z^* = re^{-i\theta} \).

  • 5. A useful short-cut when working with complex conjugate roots is

    \[ (x - z)(x - z^*) = x^2 - 2\operatorname{Re}(z)\,x + |z|^2. \]

  • 6. De Moivre’s theorem:
    \( (r(\cos\theta + i\sin\theta))^n = r^n(\cos n\theta + i\sin n\theta) \), \( n \in \mathbb{Z} \).

  • 7. You should be able to use De Moivre’s theorem to find roots of complex numbers.
    More generally, the solutions of \( z^n = w \) form a regular \( n \)-gon with vertices on a circle of radius \( |z| \) centred at the origin.

  • 8. De Moivre identities:
    if \( z = \cos\theta + i\sin\theta \), then
    \( z^n + z^{-n} = 2\cos(n\theta) \),
    \( z^n - z^{-n} = 2i\sin(n\theta) \).

IB Past Paper Problems

Select a topic and unit, then click the button below to get a new problem.

Press the button to start!