-
1. For \( z = x + iy \):
modulus \( r = \sqrt{x^2 + y^2} \),
argument \( \tan \theta = \frac{y}{x} \).
-
2. Polar form:
\( z = r(\cos\theta + i\sin\theta) \).
-
3. Modulus–argument rules:
\( |zw| = |z||w| \),
\( \arg(zw) = \arg z + \arg w \);
\( \left|\frac{z}{w}\right| = \frac{|z|}{|w|} \),
\( \arg\!\left(\frac{z}{w}\right) = \arg z - \arg w \).
-
4. Euler form:
\( z = re^{i\theta} \),
\( e^{i\theta} = \cos\theta + i\sin\theta \),
\( z^* = re^{-i\theta} \).
-
5. A useful short-cut when working with complex conjugate roots is
\[
(x - z)(x - z^*) = x^2 - 2\operatorname{Re}(z)\,x + |z|^2.
\]
-
6. De Moivre’s theorem:
\( (r(\cos\theta + i\sin\theta))^n
= r^n(\cos n\theta + i\sin n\theta) \),
\( n \in \mathbb{Z} \).
-
7. You should be able to use De Moivre’s theorem to find roots of complex numbers.
More generally, the solutions of \( z^n = w \) form a regular \( n \)-gon with
vertices on a circle of radius \( |z| \) centred at the origin.
-
8. De Moivre identities:
if \( z = \cos\theta + i\sin\theta \),
then
\( z^n + z^{-n} = 2\cos(n\theta) \),
\( z^n - z^{-n} = 2i\sin(n\theta) \).